
Partial order reductions using
compositional confluence detection

Frédéric Lang
Radu Mateescu

INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

VASY 2

Context (1/2)
• Explicit state verification of concurrent systems

– Parallel composition of asynchronous processes

– Synchronisation or interleaving of communication actions

– Systematic exploration of the behaviour graph

• Several techniques to palliate state explosion
– Compositional verification : apply property preserving

reductions to the graphs of the composed processes

– Partial order reductions : avoid interleavings that are
useless with respect to the properties under verification

– On-the-fly verification : only explore states when
necessary to evaluate the property under verification

VASY 3

Context (2/2)

• Those techniques can be combined

– CADP toolbox (http://www.inrialpes.fr/vasy/cadp)

– Open/Caesar environment

– Exp.Open tool

• This talk presents two variants of a new partial
order reduction technique, one preserving
deadlocks and one preserving branching
equivalence, based on a compositional analysis
of the composed processes

VASY 4

Partial order reductions
persistent sets family [Godefroid, Valmari, Peled]

• Roots in communicating automata theory

• Operations are dependent if there can be some
state in which they do not commute

• Find a subset S of the operations enabled in the
current state such that every operation ∉ S and
dependent on an operation ∈ S cannot be enabled
before an operation ∈ S is fired

• Deadlocks are preserved if operations ∉ S are
postponed

• Visible traces or branching equivalence can be
preserved under additional conditions

VASY 5

Partial order reductions
τ-confluence family [Groote, van de Pol, Ying]

• Roots in process algebra theory

• Find invisible (τ) transitions commuting with all
other transitions

• Branching equivalence is preserved if transitions in
choice with τ-confluent transitions are postponed

• Symbolic and/or (on-the-fly) explicit state detection
tools exist

This talk combines persistent sets and τ-confluence

VASY 6

The network model (1/3)

• The model we use to represent concurrent systems

• Each process is described by a graph

• Each transition is labeled by a visible communication
action or an invisible action τ

• Example: a bag

snd1τ

snd2 snd1

snd2

rcv1

rcv1

rcv2

rcv2

VASY 7

The network model (2/3)
• Graphs are composed using synchronization rules
• Example: Network N

Rules: (•, rcv1, •) → rcv1 (snd1, snd1, •) → τ
(•, rcv2, •) → rcv2 (•, snd2, snd2) → τ

snd1

snd2 snd1

snd2

rcv1

rcv1

rcv2

rcv2

snd1 snd2

VASY 8

The network model (3/3)
• Network semantics = product of composed graphs
• Example: semantics of N (previous slide)

• Reasonable restrictions on τ actions guarantee that
branching equivalence is a congruence for networks
(no synchronisation, no cut, and no renaming of τ actions)

τ τ

τ τrcv1

rcv1

rcv2

rcv2

rcv2 rcv1

τ τ

VASY 9

Persistent sets for networks
• Two operations are dependent if there is some

state in which they may not commute

– For networks, operation = synchronization rule

– Two rules (a1, ..., an) → a and (b1, ..., bn) → b are
dependent if (∃i ∈ 1..n) ai ≠ • ∧ bi ≠ •

– Indeed, in this case and only in this case, there can be a
state where one rule disables the other

• Persistent set construction for networks is described
in [Lang-05]

VASY 10

τ-confluence
• Definition of partial strong τ-confluence by Groote

& van de Pol (τ-confluence for short in this talk)

• A transition is τ-confluent () if:

• τ-confluent transitions can be prioritized as long as
they do not close a circuit

• This preserves branching equivalence

♦ τ

♦ τ

♦ τ ♦ τb

b
♦ τ

b

b

b

where b = τ

or or

♦ τ

VASY 11

τ-confluence for networks

• τ-confluence can be eliminated in composed graphs
– Correct because τ-confluence elimination preserves

branching equivalence

– But useless if graphs are minimized for branching

• τ-confluence can be eliminated on-the-fly while
computing the product graph
– Efficient tools exist (EXP.OPEN/REDUCTOR tools of CADP)

– But cost increases non-linearly with the size of the
product graph

VASY 12

Compositional confluence detection
We present Compositional Confluence Detection (CCD)

• CCD removes some τ-confluent transitions that:
– Are obtained by synchronisation, then hiding, of

locally visible actions and thus cannot be removed
beforehand in the composed graphs

– Are not detected by persistent set methods

• CCD is less resource consuming than on-the-fly
τ-confluence elimination in the product graph

• CCD can be combined with compositional verification
and persistent set methods

VASY 13

Confluence
• CCD requires a more general notion of confluence

– Generalizes τ-confluence for visible actions
– Is analogous to "confluent processes" (Milner) and lifted to

transitions as Groote & van de Pol's τ-confluence
– Has a strict and a non-strict variants

• A transition is [strictly] confluent () if:

♦ a

♦ a

♦ a ♦ ab

b
♦ a

b

b
where a = τ

b

where b = τ

strict confluence

or or

non-strict confluence

♦ a

VASY 14

Strict confluence theorem
• Theorem: Prioritization of strictly confluent

transitions preserves deadlocks
• Formal proof available in INRIA RR-7078
• Example:

♦ τ
♦ τ

♦ τ ♦ τ

♦ rcv1

♦ rcv1

♦ rcv2

♦ rcv2

♦ rcv2
♦ rcv1

♦ τ
♦ τ

deadlock

VASY 15

Compositional confluence theorem
• Theorem: Transitions obtained by synchronisation of

[strictly] confluent transitions are [strictly] confluent

• Formal proof available in INRIA RR-7078

• Corollaries:
– Prioritizing transitions obtained by synchronization of

strictly confluent transitions preserves deadlocks

– Prioritizing τ-transitions obtained by synchronization of
confluent transitions preserves branching equivalence, as
long as they do not close a circuit

VASY 16

Example (1/2)

(snd1, snd1, •) → τ yields a τ-confluent transition in
init state as both snd1-transitions are confluent

♦ snd1

♦ snd2 ♦ snd1

♦ snd2

♦ rcv1

♦ rcv1

♦ rcv2

♦ rcv2

♦ snd1 ♦ snd2

VASY 17

Example (2/2)

• S = {(snd1, snd1, •) → τ} is not persistent in init state
– S persistent if each operation ∉ S dependent on a operation

∈ S cannot be enabled before an operation ∈ S is fired

– ((•, snd2, snd2), τ) ∉ S dependent on ((snd1, snd1, •), τ) ∈ S

– Both rules are enabled in init state

• Same for S = { (•, snd2, snd2) → τ }

♦ snd1

♦ snd2 ♦ snd1

♦ snd2

♦ rcv1

♦ rcv1

♦ rcv2

♦ rcv2

♦ snd1 ♦ snd2

VASY 18

Confluence detection
• Encode the problem as the resolution of a maximal

fixed point Boolean Equation System (BES):

{ Xs1,a,s2 =ν ∧s1 →b s3 (

∨s2 →a s4 Xs3,a,s4 ∨ (b=τ ∧ ∨s3 →a s2 true)
∨
(a=τ ∧ s3=s4)

) }
• Xs1,a,s2 true iff s1 →a s2 confluent
• BES resolution carried out using a global linear-time

algorithm [Andersen-94, Mateescu-00]

strict confluence

non-strict confluence

VASY 19

The EXP.OPEN 2.0 tool of CADP

• New option –confluence
– Combined with persistent set methods

(–deadpreserving, -weaktrace, or –branching options)
– Search [strictly] confluent transitions in composed graphs
– Use confluence information to prioritize transitions

Extended network
(.exp)

C representation of
the transition relation
(OPEN/CAESAR API)

OPEN/CAESAR
application program

C compiler

exp2c

O/C program
inputs

Object
program

O
ut

pu
ts

EXP.OPEN

VASY 20

Experimental results
branching (1/2)

• CADP demos available at
http://www.inrialpes.fr/vasy/cadp/demos

• ODP (Open Distributed Processing) trader (demo 37)
– 22 K st. / 158 K trans. using compositional verification

– no reduction using persistent sets

– 0,5 K st. / 2,8 K trans. using CCD

• Asynchronous circuit for Data Encryption (demo 38)
– 1,4 K st. / 3,5 K trans. using compositional verification

– no reduction using persistent sets

– 0,3 K st. / 0,6 K trans. using CCD

VASY 21

Experimental results
branching (2/2)

• Examples provided by ST Microelectronics
(critical part of a multiprocessor system on chip)

• ST example 1:
– 5,4 M st. / 37,6 M trans. using compositional verification
– no reduction using persistent sets
– 5,1 M st. / 24,7 M trans. using persistent sets + CCD

• ST example 2:
– 789 M st. / 8104 M trans. using compositional verification
– no reduction using persistent sets
– 710 M st. / 6143 M trans. using persistent sets + CCD

VASY 22

Experimental results
deadlocks

• ODP trader
– 22 K st. / 158 K trans. using compositional verification

– no reduction using persistent sets

– 0,08 K st. / 0,1 K trans. using persistent sets + CCD

• ST example 1:
– 5,4 M st. / 37,6 M trans. using compositional verification

– 5,2 M st. / 34,2 M trans. using persistent sets

– 0,39 M st. / 1,3 M trans. using persistent sets + CCD

VASY 23

Conclusion
• CCD (Compositional Confluence Detection) is a new

partial order reduction method
– It works compositionally by searching confluence in the

composed graphs to detect confluence in the product

– It can improve the reductions obtained using
persistent set methods

• CADP (http://www.inrialpes.fr/vasy/cadp) supports
CCD combined with persistent sets, on-the fly
verification and compositional verification

• In the future, CCD could also be combined with
distributed graph generation

